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A Method for the Calculation of the Radiation-Pattern

and Mode-Conversion Properties of a Solid-state

Heteroiunction Laser

LEONARD LEWIN, SENIOR MEMBER, IEEE

Abstract-A solution of the laser fields, both inside and outside the

laser, is given in terms of the mode-conversion coefficients and
an integral equation for the radiation pattern. It is shown how very

accurate analytic solutions can be obtained by what, at first sight,
appear to be extremely crude approximations. The reason is that
mode conversion is taken implicitly into account by using a multi-

plier, whose exact form does not appear to be very critical, as a

weighting function to average two different formulas for the function

representing the radiation; and with the correct form for it, all the

mode-conversion and reflection coefficients can be legitimately
ignored. A plane-wave formula for this multiplier is a good first

approximation, and a number of existing expressions occurring in
the literature are obtained in this way. It is also shown rigorously
that the results of an earlier obliquity-factor analysis apply. Further
refinements are introduced to allow for higher order discrete modes,

and good approximate analytic forms for the mode-reflection and
conversion coefficients are obtained. A check with a rather extreme
example shows excellent agreement with Ikegami% numerical com-

putation for the dominant-mode reflection at the laser-air interface.
The methods of this paper are applicable to general laser struc-

tures of cylindrical geometry with either continuous or discontinuous

variations in refractive index. Very accurate numerical solutions

should be obtainable after only one iteration of the integral equation,

starting with the reflection-modified form of Hoclrham% formula as

initiating function.

I. INTRODUCTION

T HE SIMPLEST formula for the radiation pattern

involves a diffraction-type calculation based on the

field distribution of an exciting mode. Casey, Panish, and

Merz [1] have shown that this leads to a fairly good agree-

ment with experiments, but that the measured radiation

pattern is somewhat sharper than the theoretical one.

Thompson [2] included an empirical intensity factor cos o

(where o is the angle from the axis to the field point), and

Hockham [3] showed that a jield-.strength factor cos 8
is required, along with some other factors whose effect is

relatively slight. Lewin [4] showed that Hockham’s

formula could be interpreted as the Huygens’ obliquity

factor for the arrangement, and suggested a minor correc-

tion to it to take explicit account of the reflection of the

exciting mode at the air–laser interface. Both Hockham’s

formula, and its modification, give excellent agreement
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with measurements, though there is now a just discernible

tendency [3], [5] to underestimate the beamwidth. The

effect is very slight, and is of the order of the experimental

and measurement errors, but seems sufficiently consistent

to suggest that the discrepancy is a real one. Butler and

Zoroofchi [6] produce a formula which does not differ

substantially from Hockham’s, so far as numerical results

are concerned, and they fit theoretical patterns to experi;

mental profiles from several devices to determine the

model geometry and compare the results with known

dielectric parameters of the device structure.

All these calculations use the form of an incident field

in the calculations, and imply that mode conversion is

sufficiently small to be neglected. Ikegami [7] estimates

this effect as less than 0.5 percent, and Butler and Zoroof-

chi claim that mode conversion is inconsequential, They

find that the values of dielectric steps and layer thicknesses

derived from their curve-fitting process agree “reasonably

well” with values deduced from analysis of the material

and the processing [6].

The purpose of the present paper is to refine the analysis

by taking mode conversion explicitly into account and to

verify the accuracy of the currently used formulas. This

should give confidence to the parameter values found from

curve-fitting, and permit consideration of any remaining

discrepancies, should any be found, to be related to possi-

ble effects not so far allowed for in the theory, such as

finite stripe breadth, or nonlinear or dynamic processes

in the Iasing material. It is in fact found that Hockham’s

formula, with the mode-reflection modification, is already

very accurate, and implicitly takes some mode conversion

into account. Along with its use, self-consistent values of

reflection and mode-conversion coefficients can be cal-

culated.

11. THE LASER FIELD

We assume that the junction (see Fig. 1) is excited by

the dominant mode in the transverse electric configura-
tional The form of the nth mode is EV = E. (z) exp ( –j@nz)

1 Examination of properties on the assumption of single mode
excitation is permissible if superposition applies; i.e., if the system
is linear. This analysis is therefore suitable to the dielectric slab
used as a light guide, but holds only approximately for a laser for
which nonlinear dynamic effects and saturation result in mode
selection and other features not within the scope of the present
paper.
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4X with em(p) the spectral distribution of the nth mode at

r
the interface. With thenormalization assumed for En(z)

/

we get

/

C4
en(—~)e. (p) dp = ?L.. (5)

~r2 —w

~rl d ( w III. THE RADIATED FIELD AND BOUNDARY
Y z CONDITIONS

● r2
To the right of the laser-air interface the electric field

is given by a spectral distribution T(M)

,-93

Ew(x,.z) = / T(p) exp { –j[px + (1 - P2)’12Z]) d~,
-’—m

z >0. (6)

Fig. 1. Laser-air interface.
Continuity of tangential electric and magnetic fields at

z = O then gives

where x and z are the transverse and axial coordinates, and

B. is the axial propagation coefficient, all normalized to Z’(M) = co(p) + S Be.(v) (7)

the free-space wavenumber k,. We will take En(x) to be o

normalized such that and

/
m En2(x) dx = 27r.

-m

There exist a finite number N of discrete modes to-

gether with a continuum of radiating modes, It will not

be necessary to distinguish them in this section and as a

convenience we will use the symbol ~,” to indicate a

summation from O to N plus an integration over the con-

tinuous modal set. In practice N maybe quite small, and

is often limited to the zero-order mode only. For the case

of unit incident mode at the laser-air interface the electric

field in the laser is accordingly given by

E,(x) = EO(Z) exp ( –j&z) + ~ R~En(z) exp (jpnz),
o

2<0 (1)

where the R. are the mode reflection and conversion

coefficients.

The magnetic field component Hz is proportional to

j8Eti/&. At the interface z = O the forms taken are

jaEV/az = p,E, (x) – ~ R.&E.(x). (3)
o

The electric field for z >0 is given by (6). In the far

field we take x = r sin 0, ~ = r cos 0, and evaluate the

integral by the stationary phase method. This gives

E,(o) = C cos W’ (sin 0) (9)

where C contains the phase and distance factors.

If we put p = sin 0 and write F(p) = (1 – K2)11’T(w),

then F(p), from (9), gives the radiation pattern dkectly.

Clearly, this radiation pattern is given by (8); or, alterna-

tively, (7) multiplied by (1 – W2)112. The requirement

that, in an exact analysis, these two results must be iden-

tical, in principle determines the R. and hence F(K). If

approximations are made, one formula may yield a much

better approximation than the other; and we shall be

concerned to extract from the rigorous equations the

best results possible for a given order of approximation,

Comparability between different approximations is used

as a criterion of the accuracy of the results.

IV. SOLUTION FOR F(p)

Using the orthogonality relations (5) on (8) we get,

on putting & = O, 130 = 1,

It is convenient to put these equations into spectral form. R.=t%– (1//3~) ~rn F(p)e~( –p) dp. (lo)
If w is the spectral variable we take —cc

On inserting this into (7) we find

J —m

F(K) = (1 - y2)112{2eO(p) –
/

= F(v) G(p,v) c-iv} (11)

en(M) = (1/2r) ~M E.(x) exp (jxp) dx
—m

(4)
—m where
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G(w) =~em(p)em(–v)/&
o

is directly related to the double spectral distribution of

the Green’s function, as discussed in Appendix I. Equation

(11) is an integral equation from which, in principle,

F(P) could be found; for example by iteration with a

constant multiple of (1 — v2)l’2eo(p) as a starting func-

tion. An alternative is to insert

o

into (10) and to solve the resultant set of infinite linear

equations for R% by truncation and numerical analysis.

This approach was used by Ikegami [7], who retained

up to six modes in the computations. His major findings

were that mode conversion was less than about 0.5 per-

cent and that Ro, particularly for lasers with a small

fractional difference of refractive index, was not far from,

but greater than, its value (n – 1)/ (n + 1) for normal
incidence. Here n = 6,112 is taken as 3.6, or close thereto,

for currently used laser materials. A quite different ap-

proach is through manipulation of (7) and (8), followed

by approximations in which all, or most, of the reflection

terms R. are neglected. It might appear that this is too

crude to lead to accurate results, but in fact, surprisingly

good results can be obtained in this way. For example, if

(7) be multiplied by (c, – P2)‘/2 and the result added to

(8), and if we neglect all the R. terms, we get Hockham’s

formula

F(Y) =
(1 – W2)’1’co(p) [60+ (c, – N2)’/2]

(c, – &P)l/2 + (1 – #2) ’/2 “ ’12)

The modified version comes by going through the same

process but retaining just the R. term

F(/.L) =
(1 – P2)”2 {eo(p)(~ + PO) + A} (14)

M + (1 – K2)112

where

A = M ~ R~e~(P) – ? R.fLe~ (P). (15)
o 0

We can make A = O by choosing M to be given by the

equation

M=

and if we’ knew the

(16) we would, of

(16)
o 0

value of the expression on the right of

course, have an exact solution to the
problem. All the mode-conversion and reflection effects

are contained in M. The solution we can obtain is related

to various approximations to (16), We note that, from

(3) and (8), the numerator in (16) is related to the

spectral component of the transverse component of the

reflected magnetic field, and that the denominator is

similarly related to the reflected electric field. If we make

the plane-wave assumption that the incident field spectral

component is reflected at z = O as it would be at a uniform
dielectric interface, then we can put, for the total reflected

field,

e(~) ,.fl = R(p) eo(~)

h(p) ,.fl = Cjlz cos O’e (p) ,efh (17)

Here, 0’ is the angle of propagation in the dielectric corre-

sponding to ~, and R(p) is the reflection in the dielectric

at this angle, given by

R(K) =
cos 0’ — (1/6, — sinz 0’) 1/2

(18)
cos 0’ + (l/c. — sin2 0’) 112“

F(P) = (1 + RO)
(1 – p2)llzeO(&)[(e, – p2)’/2 + PO(1 – RO)/(1 + RO)J

(6, – ~2) 1/2 + (1 — #2) 1/2
(13)

Both these forms are known to give excellent fits to ex-

perimental data. In the preceding two cases, the use of

the multiplying factor (e, – p2) 112appears to be arbitrary.

Its choice is justified solely by the fact that it leads to

known results based on the obliquity factor calculation, or

on Hockham’s more sophisticated analysis. The question

is: is there any way of choosing an optimum multiplier
such that the best possible result ensues with a neglect

of R. terms beyond a specified point? It turns out that

there is such a way of proceeding, and that (c, – pz) l@

is indeed the approximate form for the case in which all

the R. are neglected.

V. DETERMINATION OF THE OPTIMUM

MULTIPLIER

If we use a factor M, a function of p, instead of

(c, – p2) l/z, and retain all terms we get an exact formula

which is a sort of weighted average of (7) and (8)

Since p = sin@ is related to 0’ by Snell’s law of refraction

crlf2 sin 9’ = sin 0 (19)

these results give

R(p) =
(e, – pz)’jz – (1 – p2)l@

(e, – p’)’l’ + (1 – P’)’/’
(20)

and

~p112 (x)s # = (q — JP) 112. (21)

Hence (16) gives, to this approximation, M = (c, – ~2) 1/2,

and Hockham’s formula follows.

In order to put this approach on a systematic basis,

and to try to improve on the plane-wave assumption, we

assume that the first L modes are retained in their correct

form in (14) and that A!f is chosen to cancel exactly the

remaining terms. Then
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(1 – ~2)1/2

{

where A(p) is the difference between the exact form and

F(p) =
M + (1 – /.J2)l@

eO(p) (Po + M) the approxim@ion (25), into the right-hand side of the

integral equation (11 ) gives

+ i Rm%(p) (M - l?.)} (22)
{

F(u) = (1 – M2)’/2 2e0(p) – eO(w)(l - Eo)
o

with

M = 5 R&3.(p)/ i Rnen(y). (23)
L-I-1 L+l

In particular, if we take L = N so as to correspond to

all the discrete modes only, then the summations in (23)

are really integrals over the radiating modes. Since these

arevery nearly plane waves, we see that M in (23) must

be very close to the value (C.–~)l/2 for plane-wave

reflection. Hence (22), with this value of M, should be

very accurate. Of course, with many modes retained, both

discrete and continuous, (22) is correct whatever the

value Qf M, since (22) is an arbitrarily weighted average

of (7) and (8), which are exact relations in the limit of

L approaching infinity. But (22) with M = (e, – IA2)1/2

should be very close in any case whatever the value of L.
We can now recognize that the various terms in (22)

come from the Huygens’ obliquity factors appropriate

to field components with propagation factors –&; and

providing the R~ are known, (22) is the solution required.

If we retain solely the ROterm we thus get, in a rigorous

way, the reflection-modification of Hockham’s formula

[4]; numerically, the effect of this modification is ex-

tremely small, though it gives a very slight additional

sharpening of the beam.

.
—

/ }
M A(v) G(P,v) dv , (27)

—m

Here we have made use of the orthogonality of the

e.(~) and the normalization (5). If we put G (P,v) =

(e, - p2)-’/26 (p – v) + AG, where AG is the difference

between G (K,v) and its uniform-dielectric approximation

(26), then (27) beoomes, on replacing A(.) by ~(v) -

i30eo(v) (1 – Ro),

{
I’(1.L) = (1 – ~’) ‘/2 eo(~) (1 + li!O) – (e, – p2)-’/2[F(p)

– @oeo(K) (1 –
}

RO)] – /“ A(v) AGdv . (28)
—.

So far the analysis has been rigorous. The approximation

comes by neglecting the supposedly small term in A(v) AG.

The result is the modified form of Hoclcham’s formula,

(13), our most accurate equation so far. We would prefer

to go through the same process but starting with (24)

instead of (25), but (1 — P2)1/2e0(K) is not orthogonal

to en(~). A.ccordin@y, we are left with an integration

involving G (P,v) which does not appear to be analytically

tractable: though, as already mentioned? the formula

should yield accurate numerical results.

VI. ITERATIVE SOLUTION The neglected term in (28) depends on A(p), the con-

As a practical matter, approximations based on (7) tribution due to higher order discrete modes, and the

can be expected to be superior to those based on (8), since
continuous modes. The latter have spectral components

the latter converges more slowly because pm increases with
that are mainly concentrated in the region p>> O. For

m. Thus two tefis only would give, respectively, those spectral components with K > 1 the stationary

phase calculation from (6) gives in any case no radiation

F(p) w (1 – /J2)l/2e&) (1 + RO) (24) into the space z >0. Hence the main modification to
(13), as depicted in (22), comes from those discrete

F(k) w f?oeo(~) (1 – RO) (25) modes, if any, wb.ich are generated at the laser-air inter-

and with the known vanishing of F(p) at P = 1, the first

form is clearly much more accurate. The weighted aver-

ages (12) and (13) are closer still, and are suitable starting

points for an extremely rapid iteration in the integral

equation (11 ). Unfortunately, the integrations involving

G(W,V) cannot be done analytically, so this method is

only of use for numerical computations. We show here

that the very crude first approximation (25) leads to the

reflection-modified form of Hockham’s formula after one

iteration, using the uniform-dielectric approximation

G(/.t,v) s (e, – /.t’)-’/2($(w – v) (26)

found for the Green’s function transform in Appendix I.

Putting

F(p) = ~oeo(~)(1 – Ro) + A(P)

face. If there are none, then (13) @the best simple analytic

form we have so far. If, say, the m = 1 discrete mode

exists, then it should be retained in (22). If the laser is

symmetrical about z ~ O, the first discrete mode to be

retained has to be symmetrical also, since Qtherwise its

R~ would be zero. We are accordingly left with the prob-

lem of determining the mQde-conversion coeilicients R~, as
well as the dominant-mode reflection RO.

VII. CALCULATION OF THE R.

Applying the orthQgonality relations to (7) and (8),

with F(K) = (1 — U2)l@T(u) supposedly known, gives

two different formulw for R.

Rm = / em(–p)l’(~) (1 – K2)-1/2dw (29)
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= – (1/&J /“ em(–1.L)F(I.L) ck, ‘m> o. (30)
—co

If we knew the exact form for F(M), (29) and (30) would

give identical results. With only an approximation, such

as (13) or (22), the results cannot be identical, though

with a good approximate form for F(w) the results should

be close. The comparability of (29) and (30) is therefore

a measure of the reliability of the formulation. (This

statement ignores the exceptional case of an accidental

equality of two results, both of which could be wrong.)

When m = O an adtltional term, corresponding to the

exciting mode, is required, and the equations become

l+ Z%=
/

M eo(–~)F(P) (1 – K2)–112dp (31)
—m

Bo(l – Ro), = /meo(–~)F(p) d~. (32)
—m

We shall examine first the approximation that applies

when no discrete mode other than the dominant mode

exists. Hence L = O in (22), and this leads to the reflec-

tion-modified form of Hockham’s formula (13) for F(M).

Hence from (31) and (32),

/

m

l+ R!)= co(p) eO(–K)
—m

[(1 + ~o)~ +~o(l – ~“)ld~ (33)
.

M+r

/
/30(1 - R()) = m eo(~)eo(—~) (1 — 1.L2)112

—m

.[(1 + RO)M + 80(1 – ~o)l ~K (34)

ikf+r

where

M = (q – /42)1/2, r = (1 – #jl/2.

The question of what value should be used for e, is

perhaps relevant here. Since the derivation is ultimately

dependent on a consideration of the plane-wave reflection,

from the behavior of the radiating waves at the interface,

or alternatively, the approximation (26), it is apparent

that it” is the bulk medium outside the active material
that mainly determines these properties. If we use con-

stants c,l = nlz and e,z = n#, with nl > n2, for the mate-

rials, respectively, inside and outside the active region,

then e, = 6,2 = n.22is the relevant parameter to be used

in (33) and (34).

Clearly, these two relations cannot, in general, give

identical resuhs. Now the spectral form for eo(M) is mainly

concentrated around values associated with near-axial

propagation. A very crude approximation is therefore to

take co(y) = 6(M); whence (33) and (34) give

1 + Ro = Cm(l + Ro) +~o(l – Ro)]/(% + 1)

Po(1 – Ro) = Cm(l + Ro) + ~o(l – Ro)]/(m + 1).

(35)

It happens that both these relations give the same formula

(1 + li?o)/(1 – Ro) = 80. (36)

Since [8] m < BO < nl, (36) determines a value for RO

approximately equal to that for reflection at normal

incidence, i.e., Ro = (n — 1)/ (n + 1) for some average

value of n. A slightly different result ensues if we take I?O =

nl cos a, with a small, and assume eo(y) = @(w – a) +

~~(w + a). Then (1 + Ro)/(1 – Ro) = 00/cos a = nl,

substantially equivalent to (36) for m w m. Note that

this is not at all the same as the value calculated from

plane-wave incidence at angle a, particularly for large nl.

The real feature that is relevant here is that it is mainly

small values of K which are important in the integrals

in (33) and (34). If we expand AZ and I’ around p = O,

retain terms up to IJz, integrate and multiply both sides

by (WZ+ 1), then we get, to first order,

(%+ 1)(1 + Ro) = %(1 + Ro) + Do(1 – Ro)

+ (Ao/2n.J[(n2 – 1)(1 + Ro)

+ Po(l – Ro)]

(%2 + l)BO(l – Ro) = %(1 + ~0) + 80(1 – Ro)

– (fb/27d[(n22 – ‘%+ 1)

.(l+Ro) +Po(l– Ro)(ti -l)]

(37)

where

& = /meO(k)em(–p)k42dk (38)
—m

To the extent that co(p) is concentrated mainly around

~ = 0, (38) indicates that AO is small. Equations (37)
then give expressions for (1 + Ro) / (1 – Ro) which,

although no longer identical, possess the following ex-

pansions for small AO:

l+RO
TO ~ Oo[l + Ao/2 + A02(w – 1)/4%]
l–

l+Ro
-o = 90[1 + &/z+ Ao’(nz – 1 + l/n.2)/4m]. (39)
1

The difference between the two is the very small term

SoAo2/4m2 and this seems a fair measure of the accuracy of
these formulas.

The calculation of & is considered in Appendix II.

Since, from (38), AO is, in any case, a positive quantity,

(39) shows that R. is always greater than the value given

by (36). For small nlz – n.# = Ac, we get, for the case of

a single symmetrical refractive index step
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l+Ro

[ [’

1 11}
and

—~nl l+~Ae, cos2p l–
l– R, l+ptanq–~l

J

m
R, = el(~)el( —P).f2(IJ) @

(40) —m

where q is the smallest solution of q = (mi/A) ( AG.) 112cos q

and d is the (nonnormalized) active layer thickness.

Numerically, this formula seems to be in excellent accord

with Ikegami’s curves [7]. For example, as a somewhat

extreme case, if we take CA = 12.9, m = 11.1, so that

(m – m) /n, = 0.07, then Ikegami’s results ford = 0.3K,

x = 0.86M give Ro = 0.628 while (40) gives 0.618. The

normal incidence figure on a dielectric-air interface with

G = 12,9, (n = 3.6), is, by contrast, 0.565; and for c~ =

11.1 (n = 3.33), it is 0.538.

For (Td/x) (Ae,) 112small enough it would be possible

for p tan P to be less than 1/ (e,l – 1). Should this hap-

pen, the multiplier of Ae, in (40) could go negative, and

RO would dip below the value corresponding to n,. This

can only happen for very small d/X and/or Ae, ” and is

outside the range of Ikegami’s curves. All of these seem

to rise from near the value determined by ni, though for

d = 0.2p the behavior of the curve near the origin is

somewhat different. The region in which this effect can

occur is approximately determined by

(X/d)2 > (~r, – 1) Ac, (41)

and with Ikegami’s values for h and E it would begin to

occur when d <0. 155Y and (nl — m) /nl <0.01. How-

ever, AG. would necessarily be small in this range, so that

the decrease of R~ below the value corresponding to nl at

normal incidence would, with current materials, seem to

be negligible.
TO calculate Rm for m > Owe return to (29) and (30)

with F(P) given by (22). We shall illustrate the method

by evaluating R1 and its effect on the value of Ro. Follow-

ing the process that led to (33) and (34) but with F(~)

taken as

F(M) = (1 – #2)1/2
~ + ~ E{Jf(l + Ro) + Po(1 – Rd}eo(w)

+ RI(M – Bl)el(g) ] (Q)

we get the two sets of equations

/

m

l+Ro= co(p) eo( –MM(P) d~
—co

+/meo(p)e,( –w).fl(K) dfl (45)
—m

+ /me,(p)el( –N)f,(p) r dp. (46)
—cc

As before, I’ = (1 – ~2) 112,M = (q – p2)112,and here we

have put

fl(~) = CM(1 + Ro) + Po(1 – Ro)l/(M + r) (47)

ft(~) = R1(M – 1%)/(M + r). (48)

Equations (43) and (44) are the same as (33) and

(34), except for the terms in jt (P). As explained earlier,

much of the contribution in these integrals arises from

values of M near O. Since, as will be apparent shortly, El

is of order Al, which is small, while the factor &f — 61

in jt (p) is also small for small K, the additional terms is

(43) and (44) are of second order. Hence the first-order

calculations of RO persist unaltered. Turning our attention

to the pair (45) and (46) we replace jl, A, and F by their

small-~ approximations, to give, after the manner of

getting (37),

RI(1 + m) = RI(n2 – A) + (A1/2nJ[(fi – 1)(1 + Ro)

+ 80(1 – Ro)l (49)

–&Rl(l + @ = Rl(m – I%) – (&/2m)c(w2 – m + 1)

o(1 + Ro) + I?o(l – R,)(n2 – 1)11. (50)

These two relations are compatible apart from second-

order terms, and give

Al

‘1=2%(1 +@,)
[(m – 1)(1 + Ro) + 80(1 – no)]

(51)

where Al is given by (38) with m = 1. It is evaluated in

Appendix II.

Since p,= n and 130(1 – Ro)/(1 + Ro) w 1 to first
order, (51 ) can be approximated by the simpler

RI@ A@/(1 + n)2 (52)
J —m

for some average value of n between nl and m. Clearly, to

/

this order, the same calculation holds for all the dkicrete
~o(l – Ro) = m eo (p) eo ( —w)$l(P) I’ & Rm to give

-m
Rm= A#z/(1 + n)2, O<m SN. (53)

+ fm el(~)eo( –#)$t(N) r d~ (44) The method does not apply to the leaky modes because,
—m for them, the restriction m < % < nl does not hold,
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and the approximations contingent on this are no longer

valid. We can still use (29) or (30) with a suitable ap-

proximation for F(y) but the effective values of M are

no longer restricted to those around zero. Only a numerical

integration seems possible for evaluation.

VIII. CONCLUSIONS

A formulation of the laser field has been achieved and

examined from the point of view of several diflerent

approximate solutions, Hockham’s formula implicitly

takes the radiating modes into account and is expected

to be quite accurate. The reflection-modification to take

the dominant mode reflection explicitly into consideration

gives a formal improvement, though its numerical effect

is slight. Similarly, if higher order discrete modes can

occur, (42) or the more general (22) can be used. These

terms follow the Huygens’ obliquity factor analysis of

Lewin [4], though they are here produced in a more

rigorous manner. The mode-conver~ion coefficients that

appear can be calculated analytically, and several useful

approximate forms are given for the case of a small re-

fractive index difference. The, basic method would appear

to have a quite general field of application.

APPENDIX I

THE GREEN’S FUNCTION

The Green’s function in cylindrical coordinates repre-

sents the electric field from a unit line source. A general

representation of the fields of a dielectric slab from a source

located at z = O is

E, = SE~(z)A.~exp (–j% [ z 1) (Al)
o

–&oH. = ~ E~(z)A#~ exp ( –j% I z 1) sgn (z) (A2)
o

where to = (pO/co) ‘/2 and sgn (z) = ( ● 1) according to the

sign of Z. If we take the source to be of strength ( – I/fo)

and to be k delta function 6(z — x’) located at x = x’ then

the requirement that the discontinuity in H. should equal

the current at z = O gives

‘ i Em(z)2Am& = 8(Z – z’). (A3)
o

Noting that the Em are mutually orthogonal and have

been normalized to 27r (see (5)) we get

Aw = E~(A’)/4@~. (A4)
Hence

g(w’) = -&j&t(z)J%(d)/&a (A5)
o

and is ( – l/iO) times the Green’s function for the laser

structure.
Multiplying (A5) by exp (jx’W) exp ( -jxv), where P

and v are speetral variables, and integrating with respect

to x and x’ from — @ to + m gives

mm

H g(z,z’) exp [j(z’~ – n)] dx dz’
—m —cc

m

o

where

em(p) = (1/27i) ~rn Em(z) exp (jAz) dz.
—m

Defining G(w,v) as the series on the right of (A6) we get

cow

G(w,v) = ~ H g(z,d) exp [j(z’p – m)] dx dz’,
T _m _m

(A?)

Now in the limiting case of a uniform dielectric of refrac-

tive index n2 the radiation from a unit source is readily

found to be proportional to the Hankel function Ho@)(~p)

where p is the normalized radial coordinate. With the

strength of source used here the proportionality constant

can be shown to be (~), Since at z = O we have p =

]z–z’lweget

g(qd) = (*) HO(’)(7Z,I x – x’ /). (A8)

Substituting in (A7) and using the integral

HO(2) (n] r 1) = (1/7r) Jm exp (j’t) (n2 – t2]-112 d (A9)
—m

gives

. exp ~j[zt – z’i! + Z’P – ZV] J dz dx’ dt. (A1O)

Now the expression ~–=w exp (jxr) dx is zero except when

T = O, when it is infinite. By integrating with respect to

r over a short interval surrounding r = O we get the value

2%. Hence the integral can be represented by 2u6 (r).

Using this result to evaluate the z and x’ integrals in

(A1O) we get

G(/.t,v) =
/

w (n2 _ ~2)-I12a(t – v)a(t – M) dt. (All)
—m

This expression is zero unless p = V, when it is w, i.e.,

it is a delta function of the (M — v). Integrating with

respect to P from — co to + w we get

/

a

G(p,v) dp =
\

* (n2 _
t2) ‘1/26 (t – V) dt

—m -.

= (n2 _ #)-1/2.

Hence

G(p,v) = (7’t2– V2)-1/2C$(#– V). (A12)
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Equation (A12) is the limiting form of G(w) as cl ~ ez.

The same approach enables a form for G(w) to be

found when the laser structure is specified. As an example

we give briefly the case of a uniform symmetric laser with

e? = n12, —d/2 < z < d/2, e, = %2, I z I > d/2, as shown

in Fig, 2. Only the even modes for which em(M) = e~– (w)

will survive if the feeding is chosen to be symmetrical,

i.e., a pair of sources located at &x’.

The analysis for this slab geometry is given by llarcuse

[8]. The form taken by the field depends on whether I z I

is greater or smaller than d/2, and the contribution from

the pair of sources at &x’ depends equally on whether

they are inside or outside the slab. We will indicate by

the notation {~l(z), ~z(z) ) a function of z which takes

the form $1 when I z I < d/2 and& when I z I > d/2. We

shall consider integration over an infinite range of a veal

spectral variable u so that the Fourier representation is

complete, It turns out that reciprocity y requirements

(symmetry in z and z’) have the effect of excluding from

the integral those values of u for which discrete modes

can occur. Hence they have to be allowed for explicitly:

what this means is that the analysis produces the leaky

mode components and that the discrete modes have to be

added to produce the complete solution. The analysis

yields the following forms for the electric field:

1)

+ / (rz,z – u’)-’/2A.. Cos (a’x’)
—m

.{ A.COS (CT’*), Cos (e. – CT I x l)]

.exp [—j(n.# — U2)112I z 1] da (A13)

2)

+ /“ (~22 – ~2)–1/2

—m

.COS (e. —u I 2+ 1)

.{ ACCOS (I/z), Cos (e. – a I 2 1)}

.exp [—j(n22 — c+) l/2 I z /] da.

(A14)

Herein we have defined

u’ = (U2 + At,) ‘/2

Ao = [1 + Ae, sinz (Wu’) /u2]–1i2

& = sin–l { Csin ~du cos ~du’

– (u’/a) sin ~ckr’ cos idu]A~ ). (A15)

●r2
●-x’

Fig. 2. Slab geometry, with line sources at &x’,

1) (A13) and (A14) are each solutions of the wave

equation.

2) They and their first derivatives are continuous at

X = &d/2.
3) They are syni.metrical in x and z’.

4) For x and x’ large the dominant contribution comes

from two fine sources, each of half strength, at +x’ in

medium 2, the remainder being effects attributable to

reflections and discrete modes at the slab region.

5) The representations are complete in both media.

Hence (A13) and (A14) are a valid form for the solution

for the Green’s function for the problem. In this, the

symmetrical-fed case, only symmetrical modes are re-

tained in the summation in (A13) and (A14). The more

general problem can be tackled by the same method by

including the unsymmetrical slab solution in the form

for the fields.

The verification of points 1), 2), and 3) above is straight-

forward. Point 5) is obvious by inspection for I x I > d/2
since u covers all real values. For I z I < d/2 the variable

u’ = (a2 + AcT)112 is needed to ensure the same field

variation exp [ –j (nz2 — U2)112Z] in both media, and,

therefore omits, for real u, the region – (Ae,) 112< u’ <

(At,) ’12. This corresponds to the internal reflection range,

so that the discrete modes have to be added separately.

The reason that the solution takes on this characteristic

lies in the effective decoupling of the discrete mode solu-

tions inside the slab from the fields for large x and z’. The

solution (A14) is built up on the latter and gives

/

m

4rEv - j (m’ – (7’)-1/’ [Cos (a(z – 2’))
-m

+ COS(2& – u(X + x’))] da (A16)

for x, x’>> d/2, the discrete modes being exponentially

‘attenuated. When x and X1are both large, the second term

oscillates rapidly and its integration approaches zero. The
first term is integrable exactly, and gives

as is required for a half-strength source at x’ in medium

2. The remaining term in (A16) is at a distance 2x’ awayIt can now be verified that
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and corresponds to the effect of the slab on the radiation

there due to (A17). This verifies point 4) and completes

the demonstration of the correctness of the solution.

The double spectral distribution Green’s function comes

by multiplying (A13) and (A14) by exp [j(zk – z’.)]

and integrating with respect to x and xl from — co to

+ co. This gives

G(P,v) = (1/472)
/

M (n,’ – a2)-’/’e(~,u)e( –.,a) da
—m

+ j e~(p)e~( –v)/& (A18)
o

where

e(fl,u) = 7rcose#[a(# + a) +ii(p — u)]

p sin ~dk cos ?jdr’ — a’ cos ~dp sin ~du’
+ 2Ae,A. ~

(#’ – u’) (p’ – a“)
. (A19)

Unfortunately, the simplicity of the form of (A12) has

now been largely lost. This actual form can, in fact, be

abstracted from the &function products coming from the

e(w) e( - v,u) multiplication in (A18), where it appears

along with a factor cos (3Pcos e,. The angle ek is very

small except for a range within p’ < Ae,, when it runs to

*7/2. At the same time Ap passes through zero. These

rather awkward properties make it difficult to express

(A18) in the form (A12) plus a correction term propor-

tional to Ae,, a structure which does ‘seem indicated by

this analysis. If this could be done a lot of useful improve-

ments to the earlier formulas could probably be achieved.

APPENIIIX II

EVALUATION OF A.

Before proceeding to a computation of Am for the sym.

metrical slab arrangement, it may be as well to repeat

that eo(p) is governed mainly by a range of p near the

origin. For large ~, em(~) = O(g–t) so that f-w eO(W).

em( —p) # dp has an integrand that varies as p–4 for large

~. Its rapid convergence is therefore assured.

Using the spectral formula for em( –M) we get

A.= (1,47r2) ~~~~~EO(X)E#)

.exp [j~(z — z’) ]K’ d~ dx dx’.

This expression can be evaluated as follows. Replace

~’ exp [j~ (z – z’)] by (d2/&’) exp [jp (z – z’)] and

evaluate the ~ integration to give (d2/&2) 6( z — z’). The

integral is now integrated by parts twice with respect to

z, and the x’ integration performed. This gives

Am = (–1/27r) ~“ E~(z)E{’(z) dx
—m

. (1/27r) ~~ [e,, – 802+ { Ac,,O)]E~(Z)Eo(z) dx
—co

(A20)

on using the “wave equation for EO(z). Equation (A20) is,

in fact, rather more general in application if { AG.,0 ] is

replaced by Ae, (z), a varying deviation from the value

e,z taken for large z.
For m = O (A20) gives

/

dl’
A. = C,2– f?02+ ( Ae,/r) No’ COS2(UZ) dx (A21)

o

where NO is a normalizing factor and IJ the transverse

wavenumber for the dominant

requirement

/
M NO’{COS’ (ax), COS’ (ad/2)

—w

mode. NO is found by the

.exp [–!2Y(I z I – d/2)]) dx = 27r (A22)

where Y2 = ,f302— n.?.

Carrying out the indicated integrations and using the

continuity condition at x = d/2, which can be put in the

form

psinp=ydcosv (A23)

we get

(A24)

Here q = ~d~2, and (A23) can also be written, since

~’ = Aq. — ~’,

P = d(A~,) 1/2COSq. (A25)

The integrations in (A21 ) are straightforward. Recalling

that, so far, all quantities have been normalized with

respect to IcO,the free-space wavenumber, we get (40) of

Section VII.

Equation (A25) is a transcendental equation for p,

which determines u, ~, and Po. Putting d (Ae,) 112= ~, the

equation p = D cos q clearly has the solution P‘= D for

small D and q = 7r/2 for large D. An approximate relation

that holds over the entire range can be built up and ex-

pressed in the form

D

(

1 + D’ + 0.776fjDA 1/4

)q = (1 + D’) 112 1 + D’ + 0.10CJ8D4 “ (A26)

In particular, the simpler form q = D/(1 + D’) l/’ is very

useful for D < 1.

For values of m other than zero, the orthogonality of

the Em reduces the first part of (A20) to zero and we are
left with

/

d/2

Am = (Ae,/T) NON~ COS(uoz) COS(u~z) dx (A27)
o

where the subscripts O and m refer to the corresponding

roots for u, via q, in (A23). The integration gives

[

POtan qO”Pw tan pm 1
1/2

.
(1 + potanpo)(l + p~tanp~)

. (A28)
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Short Papers

Characteristic Impedance and Field Patterns of the

Shielded Microstrip on a Ferrite Substrate

DAVID T. YEH ANDDONALD M. BOLLE, SENIORMEMBER,IEEE

Abstract—The dispersion relation, field patterns, and current

density at the interface of a shielded microstrip on ferrite substrate

while operating at remanence is obtained and the characteristic

impedance of such a structure is presented.

In a paper by Minor and Belle [1], the dkpersion relation of a
shielded microstrip on a ferrite substrate transversely magnetized in
the plane of the substrate was analyzed. The method of solution
used was to construct an appropriate modal expansion in each of

the two media. The boundary conditions at the interface were then

expressed in terms of two coupled integral equations which were
subsequently solved by the method of moments. An estimate of

0.5-percent accuracy using a matrix as small as 5 X 5 was reported.

In this short paper, we obtain the characteristic impedance based

on the theory of [1]. The earlier computer program was modified

so as to yield numerical results for the characteristic impedance.
The model of the shielded microstrip is shown in Fig. 1. The wave-

gnide walls and the strip are all presumed perfectly conducting. The
strip is infinitely thin, and each of the two regions may be either
dielectric- or ferrite-loaded. We define the characteristic impedance
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Fig. 1. The shielded microstrip.

of such a structure by (see Fig. 1)

ZOA;

where

d

v=– !( WI + W2
l?lIIV Z . y

)
,y dy

0

(1)

(2)

and

z=
/
‘2J,E(x) dx. (3)

w

I&g is the y component of the electric field in region II. J*E (z)

is the axial electric current demsity. Both of these quantities may be

calculated dhectly once the propagation factor ~ is obtained for a
time dependence of the form exp ficd]. The path of integration
taken for the voltage integral is at the midpoint of the strip with

z = (wI + WZ)/2. The current I is the total axial current in the

direction of propagation.
To ensure the correctness and establish the accuracy of the pro-

gram and of the formulation, comparison with previous results


