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A Method for the Calculation of the Radiation-Pattern
and Mode-Conversion Properties of a Solid-State

Heterojunction Laser

LEONARD LEWIN, SENTOR MEMBER, IEEE

Abstract—A solution of the laser fields, both inside and cutside the
laser, is given in terms of the mode-conversion coefficients and
an integral equation for the radiation pattern. It is shown how very
accurate analytic solutions can be obtained by what, at first sight,
appear to be extremely crude approximations. The reason is that
mode conversion is taken implicitly into account by using a multi-
plier, whose exact form does not appear to be very critical, as a
weighting function to average two different formulas for the function
representing the radiation; and with the correct form for it, all the
mode-conversion and reflection coefficients can be legitimately
ignored. A plane-wave formula for this multiplier is a good first
approximation, and a number of existing expressions occurring in
the literature are obtained in this way. It is also shown rigorously
that the results of an earlier obliquity-factor analysis apply. Further
refinements are introduced to allow for higher order discrete modes,
and good approximate analytic forms for the mode-reflection and
conversion coefficients are obtained. A check with a rather extreme
example shows excellent agreement with Ikegami’s numerical com-
putation for the dominant-mode reflection at the laser~air interface.

The methods of this paper are applicable to general laser struc-
tures of cylindrical geometry with either continuous or discontinuous
variations in refractive index. Very accurate numerical solutions
should be obtainable after only one iteration of the integral equation,
starting with the reflection-modified form of Hockham’s formula as
initiating function.

I. INTRODUCTION

HE SIMPLEST formula for the radiation pattern

involves a diffraction-type calculation based on the
field distribution of an exciting mode. Casey, Panish, and
Merz [1] have shown that this leads to a fairly good agree-
ment with experiments, but that the measured radiation
pattern is somewhat sharper than the theoretical one.
Thompson [2] included an empirical intensity factor cos 6
(where 6 is the angle from the axis to the field point), and
Hockham [3] showed that a field-strength factor cosé
is required, along with some other factors whose effect is
relatively slight. Lewin [4] showed that Hockham’s
formula could be interpreted as the Huygens’ obliquity
factor for the arrangement, and suggested a minor correc-
tion to it to take explicit account of the reflection of the
exciting mode at the air-laser interface. Both Hockham’s
formula, and its modification, give excellent agreement
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with measurements, though there is now a just discernible
tendency [37, [5] to underestimate the beamwidth. The
effect is very slight, and is of the order of the experimental
and measurement errors, but seems sufficiently consistent
to suggest that the discrepancy is a real one. Butler and
Zoroofchi [67] produce a formula which does not differ
substantially from Hoekham’s, so far as numerical results
are concerned, and they fit theoretical patterns to experi-
mental profiles from several devices to determine the
model geometry and compare the results with known
dielectric parameters of the device structure.

All these calculations use the form of an incident field
in the calculations, and imply that mode conversion is
sufficiently small to be neglected. Ikegami [7] estimates
this effect as less than 0.5 percent, and Butler and Zoroof-
chi claim that mode conversion is inconsequential. They
find that the values of dielectric steps and layer thicknesses
derived from their curve-fitting process agree ‘“‘reasonably
well” with values deduced from analysis of the material
and the processing [6].

The purpose of the present paper is to refine the analysis
by taking mode conversion explicitly into account and to
verify the accuracy of the currently used formulas. This
should give confidence to the parameter values found from
curve-fitting, and permit consideration of any remaining
discrepancies, should any be found, to be related to possi-
ble effects not so far allowed for in the theory, such as
finite stripe breadth, or nonlinear or dynamic processes
in the lasing material. Tt is in fact found that Hockham’s
formula, with the mode-reflection modification, is already
very accurate, and implicitly takes some mode conversion
into account. Along with its use, self-consistent values of
reflection and mode-conversion coefficients can be cal-
culated.

II. THE LASER FIELD

We assume that the junction (see Fig. 1) is excited by
the dominant mode in the transverse electric configura-
tion.! The form of the nth mode is B, = E,(z) exp (—jB.2)

! Examination of properties on the assumption of single mode
excitation is permissible if superposition applies; i.e., if the system
is linear. This analysis is therefore suitable to the dielectric slab
used as a light guide, but holds only approximately for a laser for
which nonlinear dynamic effects and saturation result in mode
selection and other features not within the scope of the present

paper.
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Fig. 1. Laser-air interface.

where z and z are the transverse and axial coordinates, and
B» is the axial propagation coefficient, all normalized to
the free-space wavenumber k,. We will take E,(2) to be
normalized such that

f E2(z) dz = 2m.

There exist a finite number N of discrete modes to-
gether with a continuum of radiating modes. It will not
be necessary to distinguish them in this section and as a
convenience we will use the symbol >." to indicate a
summation from 0 to N plus an integration over the con-
tinuous modal set. In practice N may be quite small, and
is often limited to the zero-order mode only. For the case
of unit incident mode at the laser—air interface the electric
field in the laser is accordingly given by

E,(z) = Folz) exp (—je2) + 35 Ban(x) exp (62),

2<0 ()

where the R, are the mode reflection and conversion
coefficients.

The magnetic field component H, is proportional to
joE,/dz. At the interface 2z = 0 the forms taken are

E, = Eo(2) + 3 RaFn(2) @)

j0B,/02 = BoTEo(z) — 5 RuBaEa(). 3)

It is convenient to put these equations into spectral form.
If u is the spectral variable we take

Eu(e) = [ ealu) exp (—jow) do

—0Q

() = (1/2m) [ Bu(a) exp (o) 2 (#)
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with e,(u) the spectral distribution of the nth mode at
the interface. With the normalization assumed for E,(x)
we get

‘/w em(—ﬂ)en(”’) d[l, = 6mn-

—%

(5)

III. THE RADIATED FIELD AND BOUNDARY
CONDITIONS

To the right of the laser-air interface the electric field
is given by a spectral distribution T (u)

Bya) = [ () exp {—=ilus + (1 = w2)152]) da,

z2>0. (6)

Continuity of tangential electric and magnetic fields at
z = 0 then gives

T = a() + 3 Ruea() (7)

and

T (1 — ) = feo() — 3 Rubata(i).  (8)

The electric field for 2 > 0 is given by (6). In the far
field we take z = rsinf, 2 = rcosd, and evaluate the
integral by the stationary phase method. This gives

E,(8) = C cos 6T (sin 6) (9)

where C contains the phase and distance factors.

If we put u = sin 6 and write F(p) = (1 — u2)'2T (u),
then F(u), from (9), gives the radiation pattern directly.
Clearly, this radiation pattern is given by (8); or, alterna~
tively, (7) multiplied by (1 — u?)¥2. The requirement
that, in an exact analysis, these two results must be iden-~
tical, in principle determines the R, and hence F{y). If
approximations are made, one formula may yield a much
better approximation than the other; and we shall be
concerned to extract from the rigorous equations the
best results possible for a given order of approximation.
Compatability between different approximations is used
as a criterion of the accuracy of the results.

IV. SOLUTION FOR F(u)
Using the orthogonality relations (5) on (8) we get,

on putting ém = 0, 6 = 1,
B = tn— (1/8) [ Plwew(=p) du.  (10)
On inserting this into (7) we find

Flw) = (1= )ini2eo(u) — [ FOIGup) &} (1)

where
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Gp) = 3 en()en(—7) /B

is directly related to the double spectral distribution of
the Green’s function, as discussed in Appendix 1. Equation
(11) is an integral equation from which, in principle,
F(u) could be found; for example by iteration with a
constant multiple of (1 — u?)Y2¢(n) as a starting func-
tion. An alternative is to insert

F) = (1 — ) {eo(u) + 5 Butw()}

into (10) and to solve the resultant set of infinite linear
equations for R, by truncation and numerical analysis.
This approach was used by Ikegami [7], who retained
up to six modes in the computations. His major findings
were that mode conversion was less than about 0.5 per-
cent and that R, particularly for lasers with a small
fractional difference of refractive index, was not far from,
but greater than, its value (n — 1)/(n 4+ 1) for normal
incidence. Here n = ¢, is taken as 3.6, or close thereto,
for currently used laser materials. A quite different ap-
proach is through manipulation of (7) and (8), followed
by approximations in which all, or most, of the reflection
terms R, are neglected. It might appear that this is too
crude to lead to accurate results, but in fact, surprisingly
good results can be obtained in this way. For example, if
(7) be multiplied by (e — u?)¥2 and the result added to
(8), and if we neglect all the R, terms, we get Hockham’s
formula

(1 — ) "e(u)[Bo + (& — p®)'2]

(e — @)+ (1—@m
The modified version comes by going through the same
process but retaining just the R, term

Flp) = (12)

(1 — p®) 2 (p)[ (& — p?) 1% 4 Bo(1 — Ry) /(1 + Ro)] )
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Fly) = (1 — p2)i2
W = g = am oW W +6) + 4} (14

where
A=M i Rnen(l"') - i Rnﬁnen(u). (15)

We can make A = 0 by choosing M to be given by the
equation
M= Z Rnﬁnen (”)/Z R,e, (I-‘) (16)
0 0
and if we knew the value of the expression on the right of
(16) we would, of course, have an exact solution to the
problem. All the mode-conversion and reflection effects
are contained in M. The solution we can obtain is related
to various approximations to (16). We note that, from
(3) and (8), the numerator in (16) is related to the
spectral component of the transverse component of the
reflected magnetic field, and that the denominator is
similarly related to the reflected electric field. If we make
the plane-wave assumption that the incident field spectral
component is reflected at z = 0 as it would be at a uniform
dielectric interface, then we can put, for the total reflected
field,
e(W)rett = R(1)eo(n)

h{p)rett = &2 cos e () ref. (17)

Here, ¢’ is the angle of propagation in the dielectric corre-
sponding to u, and R(u) is the reflection in the dielectric
at this angle, given by

cos 0 — (1/e, — sin? §')12
cos @ + (1/e, — sin?@')1i2’

R(u) = (18)

F(w) = (14 REo)

Both these forms are known to give excellent fits to ex-
perimental data. In the preceding two cases, the use of
the multiplying factor (e, — u?)!/2 appears to be arbitrary.
Its choice is justified solely by the fact that it leads to
known results based on the obliquity factor calculation, or
on Hockham’s more sophisticated analysis. The question
is: is there any way of choosing an optimum multiplier
such that the best possible result ensues with a neglect
of R, terms beyond a specified point? It turns out that
there is such a way of proceeding, and that (e, — u?)V2
is indeed the approximate form for the case in which all
the R, are neglected.

V. DETERMINATION OF THE OPTIMUM
MULTIPLIER

If we use a factor M, a function of u, instead of
(e — u2)12, and retain all terms we get an exact formula
which is a sort of weighted average of (7) and (8)

(& — w12+ (1 — p)12

(13)

Since u = sin 6 is related to 6 by Snell’s law of refraction

e1‘1/2 sin 8 = ¢in @ (19)
these results give
(e = )~ (1 — )1
R(l‘) - (er — p2)2 4 (1 — p2)¥2 (20)
and
& cos 0 = (& — )", (21)

Hence (16) gives, to this approximation, M = (e — u?)12,
and Hockham’s formula follows.

In order to put this approach on a systematic basis,
and to try to improve on the plane-wave assumption, we
assume that the first L modes are retained in their correct
form in (14) and that M is chosen to cancel exactly the
remaining terms. Then
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(1 —p)r

P =yra—am

{eo(u) (Bo + M)

3 Rotm() (M — m)} (22)
with

M= 3 RuButn(s)/ S Rutnlt). (23)
L+l

L+1

In particular, if we take L = N so as to correspond to
all the discrete modes only, then the summations in (23)
are really integrals over the radiating modes. Since these
are very nearly plane waves, we see that M in (23) must
be very close to the value (¢, — u)2 for plane-wave
reflection. Hence (22), with this value of M, should be
very accurate. Of course, with many modes retained, both
discrete and continuous, (22) is correct whatever the
value of M, since (22) is an arbitrarily weighted average
of (7) and (8), which are exact relations in the limit of
L approaching infinity. But (22) with M = (e, — )2
should be very close in any case whatever the value of L.
We can now recognize that the various terms in (22)
come from the Huygens’ obliquity factors appropriate
to field components with propagation factors —g,; and
providing the R.. are known, (22) is the solution required.
If we retain solely the Ry term we thus get, in a rigorous
way, the reflection—modification of Hockham’s formula
[4]; numerically, the effect of this modification is ex-
tremely small, though it gives a very slight additional
sharpening of the beam.

VI. ITERATIVE SOLUTION

As a practical matter, approximations based on (7)
can be expected to be superior to those based on (8), since
the latter converges more slowly because 8, increases with
m. Thus two terms only would give, respectively,

F(u) & (1 — u?)Y2g(u) (1 + Ro)
F(p) = Boeo(n) (1 — Ro)

and with the known vanishing of F(u) at p = 1, the first
form. is clearly much more accurate. The weighted aver-
ages (12) and (13) are closer still, and are suitable starting
points for an extremely rapid iteration in the integral
equation (11). Unfortunately, the integrations involving
G(p,») cannot be done analytically, so this method is
only of use for numerical computations. We show here
that the very crude first approximation (25) leads to the
reflection-modified form of Hockham’s formula after one
iteration, using the uniform-dielectric approximation

)40 — )

found for the Green’s function transform in Appendix I.
Putting

(24)
(25)

G (pyy) = (e — (26)

F(u) = Boeo(n) (1 — Ro) + A(p)
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where A(p) is the difference between the exact form and
the approximation (25), into the right-hand side of the
integral equation (11) gives

F(u) = (1 — )7 {260(#) — eo(u) (1 — Ry)

— /—: A(V)G.(u,v) dV} . (27

Here we have made use of the orthogonality of the
e,(u) and the normalization (5). If we put G(p») =
(& — u2)™V2%(u — v) + AG, where AG is the difference
between G(u,v) and its uniform-dielectric approximation
(26), then (27) becomes, on replacing A(») by F(») —
Boeo(v) (1 — Ro),

Fla) = (1 — ) {eom) (14 Be) — (& — 42)=[F ()

— Bogo(n) (1 — Ro) ] — /w A(v) &G dV} - (28)

—o0

So far the analysis has been rigorous. The approximation
comes by neglecting the supposedly small term in A(v) AG.
The result is the modified form of Hockham’s formula,
(13), our most accurate equation so far. We would prefer
to go through the same process but starting with (24)
instead of (25), but (1 — u2)'%(u) is not orthogonal
to en(n). Accordingly, we are left with an integration
involving G(p,») which does not appear to be analytically
tractable: though, as already mentioned, the formula
should yield acecurate numerical results. l

The neglected term in (28) depends on A(u), the con-
tribution due to higher order discrete modes, and the
continuous modes. The latter have spectral components
that are mainly concentrated in the region u>> 0. For
those spectral components with u > 1 the stationary
phase calculation from (6) gives in any case no radiation
into the space z > 0. Hence the main modification to
(13), as depicted in (22), comes from those discrete
modes, if any, which are generated at the laser—air inter-
face. If there are none, then (13) is the best simple analytic
form we have so far. If, say, the m = 1 discrete mode
exists, then it should be retained in (22). If the laser is
symmetrical about = 0, the first discrete mode to be
retained has to be symmetrical also, since otherwise its
R.. would be zero. We are accordingly left with the prob-
lem of determining the mode-conversion coeficients R.., as
well as the dominant-mode reflection R,.

VII. CALCULATION OF THE R,

Applying the orthaogonality relations to (7) and (8),
with F(u) = (1 — u2)¥2T(u) supposedly known, gives
two different formulas for R,

Bu= [ en(=m)F () (1 = )= du

=00

(29)
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=~ /) [ eal-wF W) s, m>0. (30)

If we knew the exact form for F(u), (29) and (30) would
give identical results. With only an approximation, such
as (13) or (22), the results cannot be identical, though
with a good approximate form for F(u) the results should
be close. The compatability of (29) and (30) is therefore
a measure of the reliability of the formulation. (This
statement ignores the exceptional case of an accidental
equality of two results, both of which could be wrong.)
When m = 0 an additional term, corresponding to the
exciting mode, is required, and the equations become

L4 R= [ el(=mF 1~ @) ndu (31)

—00

Bol1 = Ro) = [ eo =) P(u) d (32)

We shall examine first the approximation that applies
when no discrete mode other than the dominant mode
exists. Hence I = 0 in (22), and this leads to the reflec-
tion-modified form of Hockham’s formula (13) for F(u).
Hence from (31) and (32), ’

14+ Ro= [ " eo(w)eo(—1)

—00

LA+ RB)M + Bo(1 — Ro) ]

M¥T du (33)

Bo(l — Ry) = /“” eo(p)eo(—p) (1 — u?)l2

—0

[(1 + Ro) M + Bo(1 — Ro)]d
M+T #

(34)

where

M= (e—@) T =(1- @)

The question of what value should be used for e, is
perhaps relevant here. Since the derivation is ultimately
dependent on a consideration of the plane-wave reflection,
from the behavior of the radiating waves at the interface,
or alternatively, the approximation (26), it is apparent
that it is the bulk medium outside the active material
that mainly determines these properties. If we use con-
stants e, = 72 and eo = ny%, with n; > n,, for the mate-
rials, respectively, inside and outside the active region,
then e, = 2 = ny? is the relevant parameter to be used
in (33) and (34).

Clearly, these two relations cannot, in general, give
identical results. Now the spectral form for e,(x) is mainly
concentrated around values associated with near-axial
propagation. A very crude approximation is therefore to
take e(u) = 8(u); whence (33) and (34) give
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14+ Ry = [n(1 + Ro) + Bo(1 — Ro)]/ (2 + 1)
Bo(1 — Ro) = [ma(1 + Ro) + Bo(1 — Ro)]/ (e + 1).
(35)
It happens that both these relations give the same formula
(14 Ro)/(1 — Ro) = Bo. (36)

Since [8] 72 < By < m1, (36) determines a value for R,
approximately equal to that for reflection at normal
incidence, i.e., By = (n — 1)/(n + 1) for some average
value of 7. A slightly different result ensues if we take 8, =
ny cos a, with o small, and assume e (u) = +6(u — @) +
36(u + @). Then (14 Ro)/(1 — Ro) = Bo/cos a = my,
substantially equivalent to (36) for m1 = n.. Note that
this is not at all the same as the value calculated from
plane-wave incidence at angle «, particularly for large 7.
The real feature that is relevant here is that it is mainly
small values of x4 which are important in the integrals
in (33) and (34). If we expand M and T around g = 0,
retain terms up to p?, integrate and multiply both sides
by (ny + 1), then we get, to first order,

(m2 + 1) (1 + Ro) = n2(1 + Ro) + Bo(1 — Ro)
+ (A0/2m5) [(me — 1) (1 + Ry)
+ Bo(1 — Ro) ]
(ne + 1)Bo(1l — Ro) = ne(1 + Ro) + Bo(1 — Ry)
— (A/2m)[(ne? — ms + 1)
*(1+ Ro) + Bo(1 — Ro) (m2 — 1) ]

(37)
where

Ay = /w eo(u) em(—u) u? dpu.

-=00

(38)

To the extent that e (u) is concentrated mainly around
=0, (38) indicates that A, is small. Equations (37)
then give expressions for (1 4 R,)/(1 — Ry) which,
although no longer identical, possess the following ex-
pansions for small Aq:

1+R
: + 2 AL+ &0/2 + A(m — 1) /4]
- Q
1+ R
- jRoN B[l + Ao/2 + Ad(m — 1 + 1/ms) /4m]. (39)

The difference between the two is the very small term
BoAd?/4n:? and this seems a fair measure of the accuracy of
these formulas.

The calculation of A, is considered in Appendix II.
Since, from (38), A, is, in any case, a positive quantity,
(39) shows that R, is always greater than the value given
by (36). For small 7 — n.? = Ae, we get, for the case of
a single symmetrical refractive index step
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1+ R ’
1 _R:an{l-i—%Ae,cos?go[l —

___j;___~.lH
14 optane €q
(40)

where ¢ is the smallest solution of ¢ = (wd/\) (Ae,) Y2 cos ¢
and d is the (nonnormalized) active layer thickness.
Numerically, this formula seems to be in excellent accord
with Tkegami’s curves [7]. For example, as a somewhat
extreme case, if we take ey = 12.9, ¢2 = 11.1, so that
(m1 — m2) /na = 0.07, then Tkegami’s results for d = 0.3y,
A = 0.86u give Ry = 0.628 while (40) gives 0.618. The
normal incidence figure on a dielectric—air interface with
& = 12.9, (n = 3.8), is, by contrast, 0.565; and for ¢ =
11.1 (n = 3.33), it is 0.538.

For (xd/\) (Ae)Y? small enough it would be possible
for ¢ tan ¢ to be less than 1/(ey — 1). Should this hap-
pen, the multiplier of Ae, in (40) could go negative, and
R, would dip below the value corresponding to 7. This
can only happen for very small d/X and/or Ae. and is
outside the range of Ikegami’s curves. All of these seem
to rise from near the value determined by 7, though for
d = 0.2y the behavior of the curve near the origin is
somewhat different. The region in which this effect can
occur is approximately determined by

(M 7d)2 > (e — 1) Aer (41)

and with Ikegami’s values for A and e it would begin to
oceur when d < 0.155p and (n; — m2) /m < 0.01. How-
ever, Ae, would necessarily be small in this range, so that
the decrease of E, below the value corresponding to n; at
normal incidence would, with current materials, seem to
be negligible.

To calculate B, for m > 0 we return to (29) and (30)
with F(u) given by (22). We shall illustrate the method
by evaluating R; and its effect on the value of R, Follow-
ing the process that led to (33) and (34) but with F(u)
taken as

(1 — e

Fw) = 5=t

C{M (1 4+ Ro) + Bo(1 — Ro) }eo(u)

+ Ri(M — Bye(n)] (42)

we get the two sets of equations

14 R = [ alwe(—whk) du

—0

+[ " aWea(—mh) du (43)

Bl = R) = [ el —wAG)T du

0

+ / " awe(—wAWT du (44)
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and

Bi= [ awa(-wh) d

—00

+ [ alwal-wht du 45)

ik = [ awa(—uh T du

+ [ awea(=wAGT s (46)

As before, T = (1 — u®)¥2, M = (& — u2)?, and here we
have put

filw) = [M(1+ Ro) + Bo(1 — Ro) /(M + T) (47)
fa(w) = Bu(M — 1)/ (M + T). (48)

Equations (43) and (44) are the same as (33) and
(34), except for the terms in fa(p). As explained earlier,
much of the contribution in these integrals arises from
values of u near 0. Since, as will be apparent shortly, R
is of order A;, which is small, while the factor M — B,
in fp(u) is also small for small x, the additional terms is
(43) and (44) are of second order. Hence the first-order
calculations of R, persist unaltered. Turning our attention
to the pair (45) and (46) we replace fi, fz, and T' by their
small-x approximations, to give, after the manner of
getting (37),

Ri(1 4+ me) = Ra(ne — B1) + (A1/2n)[(ne — 1) (1 + Ro)
+ Bo(1 — Ro)] (49)

—BiR1(1 4 m) = Ri(ne — B1) — (A1/2m2)[(ma? — 12 + 1)
(14 Ro) + Bo(1 — Ro) (n2 — 1) ] (50)

These two relations are compatible apart from second-
order terms, and give

Ay
Ry~ —— -~ 1A+ R 1— R
1 2m(1 + B1) [(ne Y (1 4 Ro) + Bo o) ]
(51)
where A; is given by (388) with m = 1. It is evaluated in

Appendix II.
Since Bi~n and Bo(l — Ro)/(1 + Ry) &= 1 to first
order, (51) can be approximated by the simpler

R1 N A1n/(l —I— n)’ (52)

for some average value of n between n;, and n,. Clearly, to
this order, the same calculation holds for all the discrete
R, to give

Bum Awn/(L+n),, 0<m<N. (53)

The method does not apply to the leaky modes because,
for them, the restriction ny < Bn < m1 does not hold,
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and the approximations contingent on this are no loriger
valid. We can still use (29) or (30) with a suitable ap-
proximation for F(u) but the effective values of u are
no longer restricted to those around zero. Only a numerical
integration seems possible for evaluation.

VIII. CONCLUSIONS

A formulation of the laser field has been achieved and
examined from the point of view of several different
approximate solutions, Hockham’s forinula implicitly
takes the radiating modes into account and is expected
to be quite accurate. The reflection—modification to take
the dominant mode reflection explicitly into consideration
gives a formal improvement, though its numerical effect
is slight. Similarly, if higher order discrete modes can
occur, (42) or the more general (22) can be used. These
terms follow the Huygens’ obliquity factor analysis of
Lewin [4], though they are here produced in a more
rigorous manner. The mode-conversion coefficients that
appear can be calculated analytically, and several useful
approximate forms are given for the case of a small re-
fractive index difference. The basic method would appear
to have a quite general field of application.

APPENDIX 1
THE GREEN’S FUNCTION

The Green’s function in cylindrical coordinates repre-
sents the electric field from a unit line source. A general
representation of the fields of a dielectric slab from a source
located at z = 0 is

By, = 3 Bu(@)Anexp (—jBnl2]) (AL

—gH, = Z Ep(2) AmfBn exp (—76m l z D sgn (z) (A2)
0

where & = (uo/e0)? and sgn (2) = (1) according to the
sign of z. If we take the source to be of strength (—1/¢,)
and to be & delta function 6(z — 2') located at z = 2’ then
the requirement that the discontinuity in H, should equal
the current at z = 0 gives

' i E,(2)24,8m = 8(z — &'). (A3)

Noting that the E, are mutually orthogonal and have
been normalized to 2r (see (5)) we get

A, = En(2')/47Bm. (A4)

Hence

1 2.
g(2,2") = o 2 Ei(2) En(2') /Bm (A5)
T o
and is (—1/%&) times the Green’s function for the laser
structure. -
Multiplying (A5) by exp (ja'u) exp (—jazv), where u
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and » are spectral variables, and integrating with respect
to z and 2’ from — o to + « gives

_/.°° f“" g(z,2") exp [j(z'n — av) ] dz dz’

= 3 en(Wen(—9)/Bn  (AB)
0

where

en(w) = (1/20) [ Bu(@) exp (juz) d.
Defining G (u,») as the series on the right of (A6) we get

6w =1 [ [ ga) exp i@ — an) Jda o

(A7)

Now in the limiting case of a uniform dielectric of refrac-
tive index n, the radiation from a unit source is readily
found to be proportional to the Hankel function Hy® (nyp)
where p is the normalized radial coordinate. With the
strength of source used here the proportionality constant
can be shown to be (1). Since at z = 0 we have p =
|z — 2’ | we get

g(z2) = (DHP(na|z — 2 ). (A8)

Substituting in (A7) and using the integral
H®(n|¢)) = (1/m) [ exp (iet) (n2 — ey=0dr (A9
gives

G = A/t [~ [ " e —

cexp {jlat — o't + 2'u — 2]} deda’ dt.  (A10)

Now the expression [_,* exp (jar) dz is zero except when
7 = 0, when it is infinite. By integrating with respect to
7 over a short interval surrounding » = 0 we get the value
2r. Hence the integral can be represented by 2xd(r).
Using this result to evaluate the z and «’ integrals in
(A10) we get

®
Guy) = f (? — B)-185(t — »)5(t — u) di.  (A11)
This expression is zero unless u = », when it is w, ie.,
it is a delta function of the (u — »). Integrating with
respect to u from — e« to 4+« we get

/ Guy) du = f (2 — B)y~125(t — ») dt
= (n? — )7l
Hence

Glup) = (n? — 9*)712(p — »). (A12)
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Equation (A12) is the limiting form of G{(u,») as & — e.

The same approach enables a form for G(u,») to be
found when the laser structure is specified. As an example
we give briefly the case of a uniform symmetric laser with
&= —d/2 <x<d/2 e&=nt | 2| > d/2, as shown
in Fig. 2. Only the even modes for which e, (u) = €,— (1)
will survive if the feeding is chosen to be symmetrical,
i.e., a pair of sources located at ==z’

The analysis for this slab geometry is given by Marcuse
[8]. The form taken by the field depends on whether | z |
is greater or smaller than d/2, and the contribution from
the pair of sources at 4z’ depends equally on whether
they are inside or outside the slab. We will indicate by
the notation {fi(x), fo(z)} a function of x which takes
the form f; when |z | < d/2 and f» when |z | > d/2. We
shall consider integration over an infinite range of a real
spectral variable ¢ so that the Fourier representation is
complete. It turns out that reciprocity requirements
(symmetry in z and «’) have the effect of excluding from
the integral those values of o for which discrete modes
can occur. Hence they have to be allowed for explicitly:
what this means is that the analysis produces the leaky
mode components and that the discrete modes have to be
added to produce the complete solution. The analysis
yields the following forms for the electric field:

1)

N
|2 | < d/2, 4xBy = 2 En(2) En(a') exp (—jBn |2 [)
0

+ / (ne? — o2) 124, cos (o'2")

<{A, cos (¢'x), cos (8, —a|z|)}

cexp [—j(n? — a2)¥2| 2z |]do (Al3)
2)

|2'| > d/2, 4nE, = ¥ En(z)En(z’) exp (—jBn|2 )

+/ (ng? — ¢?)~12

ccos (0, — oo |)
-{A,cos (¢'z), cos (6, — o | z|}}
cexp [—j(n? — 6212 | 2z |] do.

(Al4)
Herein we have defined
o' = (o + Ae)1
A, = [1 + Ae sin? (3do’) fa* ]2
0, = sin™! {[sin }de cos 3do’
— (o'/o) sin §de’ cos 3do]4.}. (Alb)

Tt can now be verified that
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€p2 ® X’

®- X'

Fig. 2. Slab geometry, with line sources at +z'.

1) (A13) and (Al4) are each solutions of the wave
equation.

2) They and their first derivatives are continuous at
x = =d/2.

3) They are symmetrical in z and z’.

4) For z and ' large the dominant contribution comes
from two line sources, each of half strength, at 4=z’ in
medium 2, the remainder being effects attributable to
reflections and discrete modes at the slab region.

5) The representations are complete in both media.
Hence (A13) and (Al4) are a valid form for the solution
for the Green’s function for the problem. In this, the
symmetrical-fed case, only symmetrical modes are re-
tained in the summation in (A13) and (A14). The more
general problem can be tackled by the same method by
including the unsymmetrical slab solution in the form
for the fields.

The verification of points 1), 2), and 3) above is straight-
forward. Point 5) is obvious by inspection for | 2 | > d/2
since o covers all real values. For | z | < d/2 the variable
¢ = (o2 + A¢,)V2 is needed to ensure the same field
variation exp [—j(n? — ¢?)¥22] in both media, and,
therefore omits, for real o, the region — (Ae)12 < ¢’ <
(Ae, )12, This corresponds to the internal reflection range,
so that the discrete modes have to be added separately.
The reason that the solution takes on this characteristic
lies in the effective decoupling of the diserete mode solu-
tions inside the slab from the fields for large z and z’. The
solution (Al4) is built up on the latter and gives

4rE, ~ 3 /w (ng* — o?)~12 [cos (o(z — 2'))

—%R

+ cos (20, — o(z + 2')) Jdo  (Al16)

for z, 2/ > d/2, the discrete modes being exponentially
‘attenuated. When z and 2’ are both large, the second term
oscillates rapidly and its integration approaches zero. The

first term is integrable exactly, and gives
E, = $)H®(m|z—2'|) (A17)

as is required for a half-strength source at ' in medium
2. The remaining term in (A16) is at a distance 2z’ away
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and corresponds to the effect of the slab on the radiation
there due to (Al7). This verifies point 4) and completes
the demonstration of the correctness of the solution.

The double spectral distribution Green’s function comes
by multiplying (A13) and (A14) by exp [j(zp — z'»)]
and integrating with respect to z and 2’ from — o to
+ . This gives

Guw) = (1/4) [ (12 = ) Ve(o)e(—00) do
N
+ X em(u)en(—v)/Bn (Al8)
0
where
e(u,0) = 708 6,[8(u + o) + 6(k — )]
’ in L 1. . o/ 1 in 1 4
L 2ned, wsin 3dp cos 3do’ — o’ cos 3du sin 3do . (A19)

(w2 = 0?) (12 — o)

Unfortunately, the simplicity of the form of (A12) has
now been largely lost. This actual form ecan, in fact, be
abstracted from the é-function products coming from the
e(uv)e(—v,0) multiplication in (A18), where it appears
along with a factor cos 6, cos 6,. The angle 6, is very
small except for a range within u? < Ae,, when it runs to
=+x/2. At the same time A, passes through zero. These
rather awkward properties make it difficult to express
(A18) in the form (Al2) plus a correction term propor-
tional to Ae, a structure which does seem indicated by
this analysis. If this could be done a lot of useful improve-
ments to the earlier formulas could probably be achieved.

APPENDIX II
EVALUATION OF A,

Before proceeding to a computation of A, for the sym-
metrical slab arrangement, it may be as well to repeat
that eo(u) is governed mainly by a range of u near the
origin. For large u, en(p) ~0(u™) so that [..®e(u)-
ém{—u)u? dp has an integrand that varies as u—* for large
4. Its rapid convergence is therefore assured.

Using the spectral formula for e, ( —u) we get

t= /4w [ [ [ B Bu@)
cexp [ju(z — ') Ju2 du dz dz’.
This expression can be evaluated as follows. Replace
wexp [ju(z — 2')] by (82/92%) exp [ju(z — 2/)] and
evaluate the u integration to give (8%2/922)6(z — 2'). The
integral is now integrated by parts twice with respect to
2, and the z’ integration performed. This gives

An = (—1/2) fj Bn(2) By (2) da

= (1/2x) /w Lers — B2 + {Ae,0} B (2) Eo(z) dz

(A20)
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on using the wave equation for E,(z). Equation (A20) is,
in fact, rather more general in application if {Ae,0} is
replaced by Ae.(z), a varying deviation from the value
€2 taken for large z.

For m = 0 (A20) gives

/2
f N cos (o) do (A21)

0

Ay = &2 — Bo* + (Ae/m)

where N, is a normalizing factor and ¢ the transverse
wavenumber for the dominant mode. N, is found by the
requirement

/w Ng{cos? (ez), cos? (ed/2)

cexp[—2v(Jz| — d/2) ]} dz = 20  (A22)

where v2 = 8,2 — n..

Carrying out the indicated integrations and using the
continuity condition at # = d/2, which can be put in the
form

¢ sin ¢ = vd cos ¢ (A23)
we get
(4r/d) o tan ¢
Nt = ———— A24
° 1+ optane ( )

Here ¢ = od/2, and (A23) can also be written, since
a2 = Aep — 2

¢ = d(Ae) 2 cos ¢. (A25)

The integrations in (A21) are straightforward. Recalling
that, so far, all quantities have been normalized with
respect to ko, the free-space wavenumber, we get (40) of
Section VII.

Equation (A25) is a transcendental equation for o,
which determines o, v, and 8. Putting d(Ae,)2 = D, the
equation ¢ = D cos ¢ clearly has the solution ¢= D for
small D and ¢ & w/2 for large D. An approximate relation
that holds over the entire range can be built up and ex-
pressed in the form

B D (1 + D2 4 0.7765D4)1/4 A%
"~ (1 4+ D»vV2\1 + D2 + 0.1098D* (A26)

©

In particular, the simpler form ¢ = D/(1 + D?)'2ig very
useful for D < 1.

For values of m other than zero, the orthogonality of
the E.. reduces the first part of (A20) to zero and we are
left with

d/2
An = (Ae/7) f NolNon cos (o0z) cos (oma) dz (A7)
0
where the subscripts 0 and m refer to the corresponding
roots for o, via ¢, in (A23). The integration gives

sin (@0 — ‘P'm)]
Y0 — Pm

sin (¢o + om)
©o + ©Cm

A, = Ae,[

[ o tan oo tan ¢,

1/2
. (A28
(1 4+ gotan o) (1 + somtanqom)] (A28)
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Characteristic Impedance and Field Patterns of the
Shielded Microstrip on a Ferrite Substrate

DAVID T. YEH axp DONALD M. BOLLE, SENIOR MEMBER, IEEE

Abstract—The dispersion relation, field patterns, and current
density at the interface of a shielded microstrip on ferrite substrate
while operating at remanence is obtained and the characteristic
impedance of such a structure is presented.

In a paper by Minor and Bolle [1], the dispersion relation of a
shielded microstrip on a ferrite substrate transversly magnetized in
the plane of the substrate was analyzed. The method of solution
used was to construct an appropriate modal expansion in each of
the two media. The boundary conditions at the interface were then
expressed in terms of two coupled integral equations which were
subsequently solved by the method of moments. An estimate of
0.5-percent aceuracy using a matrix as small as 5 X 5 was reported.

In this short paper, we obtain the characteristic impedance based
on the theory of [1]. The earlier computer program was modified
80 as to yield numerical results for the characteristic impedance.

The model of the shielded microstrip is shown in Fig. 1. The wave-
guide walls and the strip are all presumed perfectly conducting. The
strip is infinitely thin, and each of the two regions may be either
dielectric- or ferrite-loaded. We define the characteristic impedance
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Fig. 1. The shielded microstrip.

of such a structure by (see Fig. 1)

14
Zy & 7 (1)
where
d
V=—jEm(x=w‘J2”’“, )d @)
0
and
0y
I =/ J 2 (z) dx. (3)

wy

Eiy, is the y component of the electric field in region II. J./7(x)
is the axial electric current density. Both of these quantities may be
calculated directly once the propagation factor 8 is obtained for a
time dependence of the form exp [jwt]. The path of integration
taken for the voltage integral is at the midpoint of the strip with
x = (w; + w2) /2. The current I is the total axial current in the
direction of propagation.

To ensure the correctness and establish the accuracy of the pro-
gram and of the formulation, comparison with previous results



